Impact of environmental stressors on tolerance to hemorrhage in humans

Author:

Crandall Craig G.1ORCID,Rickards Caroline A.2,Johnson Blair D.3ORCID

Affiliation:

1. Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas

2. Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas

3. Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York

Abstract

Hemorrhage is a leading cause of death in military and civilian settings, and ~85% of potentially survivable battlefield deaths are hemorrhage-related. Soldiers and civilians are exposed to a number of environmental and physiological conditions that have the potential to alter tolerance to a hemorrhagic insult. The objective of this review is to summarize the known impact of commonly encountered environmental and physiological conditions on tolerance to hemorrhagic insult, primarily in humans. The majority of the studies used lower body negative pressure (LBNP) to simulate a hemorrhagic insult, although some studies employed incremental blood withdrawal. This review addresses, first, the use of LBNP as a model of hemorrhage-induced central hypovolemia and, then, the effects of the following conditions on tolerance to LBNP: passive and exercise-induced heat stress with and without hypohydration/dehydration, exposure to hypothermia, and exposure to altitude/hypoxia. An understanding of the effects of these environmental and physiological conditions on responses to a hemorrhagic challenge, including tolerance, can enable development and implementation of targeted strategies and interventions to reduce the impact of such conditions on tolerance to a hemorrhagic insult and, ultimately, improve survival from blood loss injuries.

Funder

National Institutes of Health

National Institutes of Heath

Department of Defense

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3