Evoked response potential markers for anesthetic and behavioral states

Author:

Rojas Manuel J.,Navas Jinna A.,Rector David M.

Abstract

The rodent whisker sensory system is a commonly used model of cortical processing; however, anesthetics cause profound differences in the shape and timing of evoked responses. Evoked response studies, especially those that use spatial mapping techniques, such as fMRI or optical imaging, will thus show significantly different results depending on the anesthesia used. To describe the effect of behavioral states and commonly used anesthetics, we characterized the early surface-evoked response potentials (ERPs) components (first ERP peak: gamma band 25–45 Hz; fast oscillation: 200–400 Hz; and very fast oscillation: 400–600 Hz) using a 25-channel electrode array on the somatosensory cortex during whisker stimulation. We found significant differences in the ERP shape when ketamine/xylazine, urethane, propofol, isoflurane, and pentobarbital sodium were administered and during sleep and wake states. The highest ERP amplitudes were observed under propofol anesthesia and during quiet sleep. Under isoflurane, the ERP was nearly absent, except for a very late component, which was concombinant with burst synchronization. The slowest responses were seen under urethane and propofol anesthesia. Spatial mapping experiments that use electrical, NMR, or optical techniques must consider the anesthetic dependency of these signals, especially when stimulation protocols or electrical and metabolic responses are compared.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3