Endothelial dysfunction and arterial pressure regulation during early diabetes in mice: roles for nitric oxide and endothelium-derived hyperpolarizing factor

Author:

Fitzgerald Sharyn M.,Kemp-Harper Barbara K.,Parkington Helena C.,Head Geoffrey A.,Evans Roger G.

Abstract

We determined whether nitric oxide (NO) counters the development of hypertension at the onset of diabetes in mice, whether this is dependent on endothelial NO synthase (eNOS), and whether non-NO endothelium-dependent vasodilator mechanisms are altered in diabetes in mice. Male mice were instrumented for chronic measurement of mean arterial pressure (MAP). In wild-type mice, MAP was greater after 5 wk of Nω-nitro-l-arginine methyl ester (l-NAME; 100 mg·kg−1·day−1 in drinking water; 97 ± 3 mmHg) than after vehicle treatment (88 ± 3 mmHg). MAP was also elevated in eNOS null mice (113 ± 4 mmHg). Seven days after streptozotocin treatment (200 mg/kg iv) MAP was further increased in l-NAME-treated mice (108 ± 5 mmHg) but not in vehicle-treated mice (88 ± 3 mmHg) nor eNOS null mice (104 ± 3 mmHg). In wild-type mice, maximal vasorelaxation of mesenteric arteries to acetylcholine was not altered by chronic l-NAME or induction of diabetes but was reduced by 42 ± 6% in l-NAME-treated diabetic mice. Furthermore, the relative roles of NO and endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced vasorelaxation were altered; the EDHF component was enhanced by l-NAME and blunted by diabetes. These data suggest that NO protects against the development of hypertension during early-stage diabetes in mice, even in the absence of eNOS. Furthermore, in mesenteric arteries, diabetes is associated with reduced EDHF function, with an apparent compensatory increase in NO function. Thus, prior inhibition of NOS results in endothelial dysfunction in early diabetes, since the diabetes-induced reduction in EDHF function cannot be compensated by increases in NO production.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3