Roux-en-Y gastric bypass does not affect daily water intake or the drinking response to dipsogenic stimuli in rats

Author:

Marshall Anikó1,Santollo Jessica1,Corteville Caroline23,Lutz Thomas A.345,Daniels Derek1

Affiliation:

1. Behavioral Neuroscience Program, Department of Psychology, The State University of New York at Buffalo, Buffalo, New York;

2. Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital Würzburg, Würzburg, Germany;

3. Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland;

4. Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and

5. Institute of Laboratory Animal Science, Vetsuisse Faculty University of Zurich, Zurich, Switzerland

Abstract

Bariatric surgery is currently the most effective treatment for severe obesity, and Roux-en-Y gastric bypass (RYGB) is the most common approach in the United States and worldwide. Many studies have documented the changes in body weight, food intake, and glycemic control associated with the procedure. Although dehydration is commonly listed as a postoperative complication, little focus has been directed to testing the response to dipsogenic treatments after RYGB. Accordingly, we used a rat model of RYGB to test for procedure-induced changes in daily water intake and in the response to three dipsogenic treatments: central administration of ANG II, peripheral injection of hypertonic saline, and overnight water deprivation. We did not find any systematic differences in daily water intake of sham-operated and RYGB rats, nor did we find any differences in the response to the dipsogenic treatments. The results of these experiments suggest that RYGB does not impair thirst responses and does not enhance any satiating effect of water intake. Furthermore, these data support the current view that feedback from the stomach is unnecessary for the termination of drinking behavior and are consistent with a role of orosensory or postgastric feedback.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3