Affiliation:
1. Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033
Abstract
The purpose of the present study was to examine the regulation of tumor necrosis factor (TNF)-α and interleukin (IL)-6 by lipopolysaccharide (LPS) in C2C12 myoblasts and mouse skeletal muscle. LPS produced dose- and time-dependent increases in TNF-α and IL-6 mRNA content in C2C12 myoblasts. The LPS-induced cytokine response could be mimicked by peptidoglycan from the cell wall of Staphylococcus aureus but not by zymosan A, a cell wall component from Saccharomyces cerevisiae. Ongoing protein synthesis was not necessary for the increase in the two cytokine mRNAs. The transcriptional inhibitor 5,6-dichloro-β-d-ribofuranosyl-benzimidazole blocked LPS-stimulated IL-6 mRNA expression without changing its mRNA half-life. The anti-inflammatory glucocorticoid dexamethasone selectively blocked LPS-stimulated IL-6 mRNA accumulation but not TNF-α. In contrast, the proteasomal inhibitor MG-132 blocked TNF-α mRNA expression but not IL-6. Exposure of myoblasts to LPS was associated with a rapid decrease in the inhibitor of nuclear factor-κB (I κB, α, and ε), and this response was also blocked by MG-132. Treatment of myocytes with IL-1 or TNF-α also increased IL-6 mRNA content, but the increase in IL-6 mRNA due to LPS could not be prevented by pretreatment with antagonists to either IL-1 or TNF. Under in vivo conditions, LPS increased the plasma concentration of TNF-α and IL-6 and stimulated the accumulation of their mRNAs in multiple tissues including skeletal muscle from wild-type mice. In contrast, the ability of LPS to stimulate the same cytokines was markedly decreased in mice that harbor a mutation in the Toll-like receptor 4. Our data suggest that LPS stimulates cytokine expression not only in classical immune tissues but also in skeletal muscle.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
208 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献