A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: extending the Guyton model

Author:

Hallow K. Melissa1,Lo Arthur2,Beh Jeni2,Rodrigo Manoj2,Ermakov Sergey2,Friedman Stuart2,de Leon Hector2,Sarkar Anamika1,Xiong Yuan1,Sarangapani Ramesh1,Schmidt Henning3,Webb Randy1,Kondic Anna Georgieva1

Affiliation:

1. Department of Modeling and Simulation, Primary Care Franchise, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey;

2. Entelos, San Mateo, California;

3. Department of Modeling and Simulation, Novartis Pharmaceuticals Corporation, St. Johann, Basel, Switzerland

Abstract

Reproducibly differential responses to different classes of antihypertensive agents are observed among hypertensive patients and may be due to interindividual differences in hypertension pathology. Computational models provide a tool for investigating the impact of underlying disease mechanisms on the response to antihypertensive therapies with different mechanisms of action. We present the development, calibration, validation, and application of an extension of the Guyton/Karaaslan model of blood pressure regulation. The model incorporates a detailed submodel of the renin-angiotensin-aldosterone system (RAAS), allowing therapies that target different parts of this pathway to be distinguished. Literature data on RAAS biomarker and blood pressure responses to different classes of therapies were used to refine the physiological actions of ANG II and aldosterone on renin secretion, renal vascular resistance, and sodium reabsorption. The calibrated model was able to accurately reproduce the RAAS biomarker and blood pressure responses to combinations of dual-RAAS agents, as well as RAAS therapies in combination with diuretics or calcium channel blockers. The final model was used to explore the impact of underlying mechanisms of hypertension on the blood pressure response to different classes of antihypertensive agents. Simulations indicate that the underlying etiology of hypertension can impact the magnitude of response to a given class of therapy, making a patient more sensitive to one class and less sensitive others. Given that hypertension is usually the result of multiple mechanisms, rather than a single factor, these findings yield insight into why combination therapy is often required to adequately control blood pressure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3