Effect of food availability and leptin on the physiology and hypothalamic gene expression of the golden spiny mouse: a desert rodent that does not hoard food

Author:

Gutman Roee,Hacmon-Keren Ronit,Choshniak Itzhak,Kronfeld-Schor Noga

Abstract

Food availability and quality in desert habitats are spatially and temporally unpredictable, and animals face periods of food shortage. The golden spiny mouse ( Acomys russatus) is an omnivorous desert rodent that does not hoard food, requiring it to withstand such periods by physiological means alone. In response to food restriction, plasma leptin concentrations, core body temperature, and energy expenditure of the spiny mouse decrease significantly after 24 h, and most spiny mice are able to maintain their body mass to ∼85% of ad libitum for a prolonged period of time. Both 1-day food deprivation and long-term food restriction had a significant effect on body mass and plasma leptin concentrations, which decreased significantly with a high correlation, as well as on the orexigenic agouti-related protein, which increased significantly as a result of the 24-h food deprivation; and on neuropeptide Y (NPY), in which the increase was more pronounced under long-term food restriction. Food restriction and food deprivation had no effect, however, on the anorexigenic pro-opiomelanocortin and cocaine and amphetamine-related transcript. Leptin administration to food-restricted spiny mice did not affect food intake or the rate of decrease in body mass, indicating that it cannot overcome the drive to eat when food is scarce. However, it did result in a significant decrease in NPY levels, and the spiny mice spent less time at low body temperatures compared with PBS-treated golden spiny mice. These results show that in food-restricted golden spiny mice, leptin affects thermogenesis, but not food consumption, and suggest that the thermoregulatory effects of leptin are mediated by NPY.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3