Altered Dendritic Integration in Hippocampal Granule Cells of Spatial Learning-Impaired Aged Rats

Author:

Krause Michael,Yang Zhiyong,Rao Geeta,Houston Frank P.,Barnes C. A.

Abstract

Glutamatergic transmission at central synapses undergoes activity-dependent and developmental changes. In the hippocampal dentate gyrus, the non- N-methyl d-aspartate (NMDA) receptor component of field excitatory postsynaptic potentials (fEPSPs) increases with age in Fischer-344 rats. This effect may not depend on the animal's activity or experience but could be part of the developmental process. Age-dependent differences in synaptic transmission at the perforant path-granule cell synapse may be caused by changes in non-NMDA and NMDA receptor-mediated currents. To test this hypothesis, we compared whole cell excitatory postsynaptic currents (EPSCs) in dentate granule cells evoked by perforant path stimulation in young (3–4 mo) and aged (22–27 mo) Fischer-344 rats using a Cs+-based intracellular solution. Aged animals as a group showed spatial learning and memory deficits in the Morris water maze. Using whole cell recordings, slope conductances of both non-NMDA and NMDA EPSCs at holding potentials −10 to +50 mV were significantly reduced in aged animals and the non-NMDA/NMDA ratio in aged animals was found to be significantly smaller than in young animals. In contrast, we detected no differences in basic electrophysiological parameters, or absolute amplitudes of non-NMDA and NMDA EPSCs. Extracellular Cs+ increased the fEPSP in young slices to a greater degree than was found in the aged slices, while it increased population spikes to a greater degree in the aged rats. Our results not only provide evidence for reduced glutamatergic synaptic responses in Fischer-344 rats but also point to differential changes in Cs+-sensitive dendritic conductances, such as Ih or inwardly rectifying potassium currents, during aging.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3