Functional morphometry demonstrates extraocular muscle compartmental contraction during vertical gaze changes

Author:

Clark Robert A.1,Demer Joseph L.12

Affiliation:

1. Stein Eye Institute and Department of Ophthalmology, David Geffen Medical School, University of California, Los Angeles, California; and

2. Department of Neurology, David Geffen Medical School, University of California, Los Angeles, California

Abstract

Anatomical studies demonstrate selective compartmental innervation of most human extraocular muscles (EOMs), suggesting the potential for differential compartmental control. This was supported by magnetic resonance imaging (MRI) demonstrating differential lateral rectus (LR) compartmental contraction during ocular counterrolling, differential medial rectus (MR) compartmental contraction during asymmetric convergence, and differential LR, inferior rectus (IR), and superior oblique (SO) compartmental contraction during vertical vergence. To ascertain possible differential compartmental EOM contraction during vertical ductions, surface coil MRI was performed over a range of target-controlled vertical gaze positions in 25 orbits of 13 normal volunteers. Cross-sectional areas and partial volumes of EOMs were analyzed in contiguous, quasi-coronal 2-mm image planes spanning origins to globe equator to determine morphometric features correlating best with contractility. Confirming and extending prior findings for horizontal EOMs during horizontal ductions, the percent change in posterior partial volume (PPV) of vertical EOMs from 8 to 14 mm posterior to the globe correlated best with vertical duction. EOMs were then divided into equal transverse compartments to evaluate the effect of vertical gaze on changes in PPV. Differential contractile changes were detected in the two compartments of the same EOM during infraduction for the IR medial vs. lateral (+4.4%, P = 0.03), LR inferior vs. superior (+4.0%, P = 0.0002), MR superior vs. inferior (−6.0%, P = 0.001), and SO lateral vs. medial (+9.7%, P = 0.007) compartments, with no differential contractile changes in the superior rectus. These findings suggest that differential compartmental activity occurs during normal vertical ductions. Thus all EOMs may contribute to cyclovertical actions.

Funder

US Public Health Service

Research to Prevent Blindness

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3