Efficiency function: improvement of classical bioheat approach

Author:

Brinck H.1,Werner J.1

Affiliation:

1. Institut fur Physiologie, Ruhr-Universitat, Bochum, Germany.

Abstract

In view of the complex vascular architecture and the intricate physical heat transfer processes in the human body, convective heat transfer via the blood is generally described by simple substitutional processes (“non-vascular models”). The classical “bioheat” approach of Pennes (J. Appl. Physiol. 1: 93–122, 1948), defining the heat flow to or from the tissue as being proportional to the product of perfusion rate and the difference of arterial and tissue temperature, has been seriously questioned after having been used for > 40 yr in many applications. In our laboratory, we have at our disposal a complex three-dimensional vascular model for the special case of tissue in a human extremity. This was used to test the performance of simple nonvascular models. It turned out that the Pennes approach may deliver acceptable results if the body is in the thermoneutral zone or if heat stress acts uniformly on the whole body. However, when cold stress or local hyperthermia is present, unreliable results must be expected. As the vascular model is not generally practicable because of its extreme complexity, we offer the efficiency function concept as a simple way of correcting the classical bioheat approach by factor multiplication. Efficiency function is determined as a function of perfusion rate and tissue depth in a way that compensates for the deficiencies of the Pennes bioheat term. The results are reasonable compared with those of the vascular model and experimental results.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3