Increased peak oxygen consumption of trained muscle requires increased electron flux capacity

Author:

Robinson D. M.1,Ogilvie R. W.1,Tullson P. C.1,Terjung R. L.1

Affiliation:

1. Department of Physiology, State University of New York Health Science Center, Syracuse 13210.

Abstract

The importance of the training-induced increase in mitochondrial capacity in realizing the increase in maximal O2 consumption (VO2max) of trained muscle was evaluated using an isolated perfused rat hindlimb preparation at a high blood flow (approximately 80 ml.min-1.100 g-1) during tetanic contractions. Rats trained for 8-–12 wk by treadmill running exhibited an approximately 25% increase in muscle VO2max (5.62 +/- 0.31 to 7.06 +/- 0.64 mumol.min-1.g-1), an increase in mitochondrial enzyme activity (approximately 70% for cytochrome oxidase and approximately 55% for NADH cytochrome-c reductase), and an increase in tissue capillarity (14%) that is expected to increase the O2 exchange capacity of the tissue. Muscle VO2max of sedentary (n = 34) and trained (n = 30) animals was determined, and electron transport capacity was acutely managed with myxothiazol, a tight-binding inhibitor of complex III. Inhibition of complex III was similar among 1) the low- and high-oxidative fibers and 2) the superficial and deep mitochondrial populations within muscle. Inhibition of NADH cytochrome-c reductase activity resulted in reductions in muscle VO2max with similar dose responses (mean effective dose of approximately 0.2 microM) of myxothiazol added to the perfusion medium. The extraction of O2 by the contracting muscle decreased as VO2max declined. The increase in muscle VO2max observed in the muscle of trained animals was eliminated when its electron transport capacity was reduced to that observed in normal sedentary rat muscle. Thus, the exercise-induced adaptation of an increased muscle mitochondrial content appears to be essential for trained muscle to exhibit its increased O2 flux capacity. The results of the present experiment illustrate the importance of mitochondrial adaptations in muscle remodeled by exercise training.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3