Respiratory muscle compensation for unilateral or bilateral hemidiaphragm paralysis in awake canines

Author:

Katagiri M.1,Young R. N.1,Platt R. S.1,Kieser T. M.1,Easton P. A.1

Affiliation:

1. Respiratory Research Group, University of Calgary, Alberta, Canada.

Abstract

In humans and some animals, the surviving respiratory muscles are able to compensate fully for unilateral, and partially for bilateral, hemidiaphragm paralysis. To examine differential activity of individual respiratory muscles after unilateral or bilateral diaphragm paralysis, length and electromyogram (EMG) of left costal and crural diaphragm segments, parasternal intercostal, and transversus abdominis were measured directly in five awake canines after implantation with sonomicrometry transducers and bipolar EMG electrodes under three conditions: during normal breathing (NOFRZ), after infusion of local anesthetic (bupivacaine) through a cervical phrenic nerve cuff to induce reversible contralateral hemidiaphragm (CNFRZ), and after bilateral diaphragm (BIFRZ) paralysis. From NOFRZ to CNFRZ, costal, crural, parasternal, and transversus abdominis increased shortening and EMG activity to compensate for contralateral diaphragm paralysis, but the increase in activity was not equivalent for each muscle. With BIFRZ, parasternal and transversus abdominis showed further increases in activity, coordinated between both inspiration and expiration. Normalized intrabreath profiles revealed dynamic differences in development of muscle activity within each breath as paralysis worsened. Review of simultaneous muscle activities showed coordinated interactions among the compensating muscles: passive shortening of transversus, and lengthening of costal and crural, coincided with increased active inspiratory shortening of parasternal. We conclude that an integrated strategy of respiratory muscle compensation for unilateral or bilateral diaphragm paralysis occurs among chest wall, abdominal, and diaphragm segmental muscles, with relative contributions of individual muscles adjusted according to the degree of diaphragm dysfunction.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3