Affiliation:
1. Department of Physiology, University of Geneva, Switzerland.
Abstract
A mathematical model analogous to Chance's “transfer function” was derived on the basis of the energy consumption principle, which is suitable to describe the energetics of human skeletal muscle during aerobic activity. The implications and the characteristics of this model are that 1) the half time of phosphocreatine (PCr) hydrolysis at the onset of a mechanical constant-load exercise is independent of the imposed charge, 2) the changes of O2 consumption in the muscle at steady state when changing workload are linearly related to PCr concentration, 3) the kinetics of the intracellular oxygen consumption during a rest-to-work transient are influenced by anaerobic glycolysis, 4) it may explain the PCr-time relationship of different muscles types (e.g., skeletal, heart, trained vs. untrained), 5) it allows one to interpret correctly the significance of the oxygen consumption kinetics in the rest-to-work transient at the lung level, and 6) it is conceived for in vivo applications.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献