Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training

Author:

Nissen S.1,Sharp R.1,Ray M.1,Rathmacher J. A.1,Rice D.1,Fuller J. C.1,Connelly A. S.1,Abumrad N.1

Affiliation:

1. Iowa State University, Ames 50011; Metabolic Technologies Inc., Ames, Iowa 50010; MET-Rx Inc., Irvine, California 92715; and North Shore University Hospital, Manhasset, New York 11030

Abstract

Nissen, S., R. Sharp, M. Ray, J. A. Rathmacher, D. Rice, J. C. Fuller, Jr., A. S. Connelly, and N. Abumrad. Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J. Appl. Physiol. 81(5): 2095–2104, 1996.—The effects of dietary supplementation with the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) were studied in two experiments. In study 1, subjects ( n = 41) were randomized among three levels of HMB supplementation (0, 1.5 or 3.0 g HMB/day) and two protein levels (normal, 117 g/day, or high, 175 g/day) and weight lifted for 1.5 h 3 days/wk for 3 wk. In study 2, subjects ( n = 28) were fed either 0 or 3.0 g HMB/day and weight lifted for 2–3 h 6 days/wk for 7 wk. In study 1, HMB significantly decreased the exercise-induced rise in muscle proteolysis as measured by urine 3-methylhistidine during the first 2 wk of exercise (linear decrease, P < 0.04). Plasma creatine phosphokinase was also decreased with HMB supplementation ( week 3, linear decrease, P < 0.05). Weight lifted was increased by HMB supplementation when compared with the unsupplemented subjects during each week of the study (linear increase, P < 0.02). In study 2, fat-free mass was significantly increased in HMB-supplemented subjects compared with the unsupplemented group at 2 and 4–6 wk of the study ( P < 0.05). In conclusion, supplementation with either 1.5 or 3 g HMB/day can partly prevent exercise-induced proteolysis and/or muscle damage and result in larger gains in muscle function associated with resistance training.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3