Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics

Author:

Ikomi Fumitaka1,Hunt James1,Hanna Gayda1,Schmid-Schönbein Geert W.1

Affiliation:

1. Department of Bioengineering and Institute for Biomedical Engineering, University of California, San Diego, La Jolla 92093-0412; and Alliance Pharmaceutical, San Diego, California 92121

Abstract

Ikomi, Fumitaka, James Hunt, Gayda Hanna, and Geert W. Schmid-Schönbein. Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J. Appl. Physiol. 81(5): 2060–2067, 1996.—Lymphatics serve to remove from the interstitium a range of materials, including plasma proteins, colloid materials, and cells. Lymph flow rates can be enhanced by periodic tissue compression or venous pressure elevation, but little is known to what degree enhancement of lymph flow affects material transport. The objective was to examine the uptake of plasma proteins, a colloidal perflubron emulsion (LA-11063, mean particle diameter = 0.34 μm), and leukocytes into lymphatics. Prenodal collecting lymphatics in the lower hindlimb of rabbits were cannulated with and without foot massage and after elevation of venous pressure (40 mmHg). The average lymph flow rates were elevated ∼22-fold by the skin massage but only about threefold by venous pressure elevation. Lymph-to-plasma protein concentration ratio remained unchanged by the massage but decreased significantly after venous pressure elevation. Lymph colloid concentration and leukocyte counts were elevated on average 47 and 8.5 times, respectively, by foot massage, but both decreased after venous pressure elevation. These results suggest that skin movement by massage and elevation of the venous pressure lead to opposite lymph transport kinetics of protein, colloids, and cells. Massage is more effective to enhance material transport out of the interstitium into the initial lymphatics.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3