Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

Author:

Fulco Charles S.1,Lewis Steven F.1,Frykman Peter N.1,Boushel Robert1,Smith Sinclair1,Harman Everett A.1,Cymerman Allen1,Pandolf Kent B.1

Affiliation:

1. Environmental Physiology and Medicine Directorate and Occupational Health and Performance Directorate, US Army Research Institute of Environmental Medicine, Natick 01760-5007; and Department of Health Sciences, Sargent College of Allied Health Professions, Boston University, Boston, Massachusetts 02215

Abstract

Fulco, Charles S., Steven F. Lewis, Peter N. Frykman, Robert Boushel, Sinclair Smith, Everett A. Harman, Allen Cymerman, and Kent B. Pandolf. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia. J. Appl. Physiol. 81(5): 1891–1900, 1996.—Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight healthy men performed exhaustive constant work rate knee extension (21 ± 3 W, 79 ± 2 and 87 ± 2% of 1-leg knee extension O2 peak uptake for normoxia and hypobaria, respectively) from knee angles of 90–150° at a rate of 1 Hz. MVC (90° knee angle) was performed before dynamic exercise and during ≤5-s pauses every 2 min of dynamic exercise. MVC force was 578 ± 29 N in normoxia and 569 ± 29 N in hypobaria before exercise and fell, at exhaustion, to similar levels (265 ± 10 and 284 ± 20 N for normoxia and hypobaria, respectively; P > 0.05) that were higher ( P < 0.01) than peak force of constant work rate knee extension (98 ± 10 N, 18 ± 3% of MVC). Time to exhaustion was 56% shorter for hypobaria than for normoxia (19 ± 5 vs. 43 ± 7 min, respectively; P < 0.01), and rate of right leg MVC fall was nearly twofold greater for hypobaria than for normoxia (mean slope = −22.3 vs. −11.9 N/min, respectively; P < 0.05). With increasing duration of dynamic exercise for normoxia and hypobaria, integrated electromyographic activity during MVC fell progressively with MVC force, implying attenuated maximal muscle excitation. Exhaustion, per se, was postulated to relate more closely to impaired shortening velocity than to failure of force-generating capacity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3