Affiliation:
1. Department of Medicine (Pulmonary/Critical Care and Arthritis Units), Massachusetts General Hospital, Boston.
Abstract
Acute lung injury with smoke inhalation results in significant morbidity and mortality. Previously we have shown that synthetic smoke composed of carbon and acrolein, a common component of smoke, causes delayed-onset noncardiogenic pulmonary edema. To study the possible role of the vasoactive and edemagenic sulfidopeptide leukotrienes (SPLT) in smoke inhalation injury, we measured pulmonary hemodynamics, lung lymph flow, and SPLT and leukotriene (LT) B4 in lung lymph before and after 10 min of synthetic acrolein smoke exposure. After smoke exposure there was a significant rise in pulmonary vascular resistance caused by a rise in pulmonary arterial pressure, a fall in cardiac output, and no change in pulmonary capillary wedge pressure. This was accompanied by an increase in total systemic vascular resistance (P less than 0.05), lung lymph flow (P less than 0.05), and extravascular lung water-to-lung dry weight ratio (P less than 0.05). Both SPLT and LTB4 clearance rose significantly (P less than 0.05), but there was a 10-fold increase in SPLT over LTB4 clearance. In sheep pretreated with FPL55712, a SPLT antagonist, the early rise in pulmonary vascular resistance was attenuated, and the rise in systemic vascular resistance was blocked. This was associated with an attenuated and delayed fall in cardiac output. FPL55712 had no effect on lung lymph flow or extravascular lung water-to-dry weight ratio. SPLT, and especially LTD4, may have a role in increased pulmonary and systemic vascular resistance after smoke inhalation injury but does not appear to affect vascular permeability.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献