Alveolar transepithelial potential difference and ion transport in adult rat lung

Author:

Ballard S. T.1,Gatzy J. T.1

Affiliation:

1. Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27514.

Abstract

The complex morphology of the mammalian lung complicates characterization of solute transport across the intact alveolar epithelium. We impaled the subpleural alveolar epithelium with microelectrodes and measured the transepithelial potential difference (PD) of the liquid-filled vascular-perfused left lobe of the rat lung. When the air space was filled entirely with Krebs-Ringer-bicarbonate, the PD was 4.7 mV (lumen negative). The PD was not affected significantly by agents that modify either Na+ or Cl- transport, but replacement of luminal Cl- with gluconate resulted in a fourfold hyperpolarization, a response also noted for large airways. When the airways were blocked by an immiscible nonconducting fluorocarbon, basal PD was not different from unblocked lobes (4.0 mV) but was inhibited 73% by luminal amiloride. Cl(-)-free Krebs-Ringer-bicarbonate blocked in the alveoli with fluorocarbon did not induce hyperpolarization. This result suggests that 1) Cl- permselectivity of the alveolar epithelium is less than that of large airway epithelium and 2) airway PD dominates the voltage across the liquid-filled lung, even when measurements are made from alveoli. When airways are blocked by fluorocarbon, the PD across the alveolar epithelium is largely dependent on Na+ flow through a path with amiloride-sensitive channels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular processes involved in lung cancer cells exposed to direct current electric field;Scientific Reports;2020-03-24

2. Diversity of voltage gated proton channels;Frontiers in Bioscience;2003

3. Distribution of ion transport mRNAs throughout murine nose and lung;American Journal of Physiology-Lung Cellular and Molecular Physiology;2000-07-01

4. Cl-channel activation is necessary for stimulation of Na transport in adult alveolar epithelial cells;American Journal of Physiology-Lung Cellular and Molecular Physiology;2000-02-01

5. Hypothesis: do voltage-gated H+channels in alveolar epithelial cells contribute to CO2 elimination by the lung?;American Journal of Physiology-Cell Physiology;2000-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3