Leakage of macromolecules in ventilated and unventilated segments of preterm lamb lungs

Author:

Berry D.1,Jobe A.1,Ikegami M.1

Affiliation:

1. Department of Pediatrics, University of California, Los Angeles School of Medicine, Harbor-UCLA Medical Center, Torrance 90509.

Abstract

The movement of macromolecules into and out of unventilated lung segments was evaluated in prematurely delivered and ventilated lambs. Seven lambs at 130 days gestational age had a bronchial balloon placed at birth before the first breath to obstruct the left lower lobe. Surfactant and 131I-albumin were instilled into the left lower lobe while surfactant and 125I-albumin were instilled into the remaining lung, and 70,000 molecular weight [3H]dextran was given into the vascular space at birth. Twenty-five percent of the lung by weight was not ventilated, and 24% of the total leak of dextran from the vascular space was recovered in the unventilated lungs at 3 h. An epithelial leak of protein from the two lung regions was documented by the loss of 11.4 and 18.4% of the labeled albumins in the nonventilated and ventilated lung regions, the appearance of 4.9 and 7.5% of the airway-instilled albumin in the vascular space from the nonventilated and ventilated lung regions, and the recovery of the labeled albumins in the carcasses of the lambs. The bidirectional flux of macromolecules was larger in the ventilated than in the nonventilated lung regions, indicating that ventilation can increase the leak of protein in the preterm lung. The lung areas that were never exposed to ventilation or oxygen also demonstrated a large bidirectional flux of macromolecules, a finding not present in the fetus, fullterm newborn, or adult. These findings indicate that ventilation is not solely responsible for the increased protein leak found in preterm lungs.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3