Extrapolation of thermodilution curves obtained during a pause in artificial ventilation

Author:

Jansen J. R.1,Bogaard J. M.1,Versprille A.1

Affiliation:

1. Department of Pulmonary Diseases, Erasmus University, Rotterdam, The Netherlands.

Abstract

The feasibility of three mathematical models to extrapolate the tail of thermodilution curves, when flectures are present in the descending limb, was tested in anesthetized pigs. The models were a local random walk model (LDRW), a log-normal distribution, and a two-compartment model. First, the accuracy of the extrapolation of the tail by each model was tested on two undisturbed curves by taking the truncation at five different points on the descending limb. The extrapolated curve area obtained from each model was compared with total area of the undisturbed curve. Next, dilution curves obtained during inspiratory hold maneuvers and characterized by deflection points were analyzed, taking the truncation just before deflection. The estimates of cardiac output by the models were compared with electromagnetically measured flow in the pulmonary artery. The area of the dilution curve was estimated more accurately when more information on the descending limb was available. The LDRW model and the log-normal distribution were superior to the two-compartment model regarding accuracy of cardiac output estimation and root-mean-square errors of the fit. Both models estimated curve area with an error less than 5% when truncation of the descending limb occurred below 60% of the peak value. In circumstances of mechanical ventilation, where only short periods of constant flow will be present, analyses of dilution curves based on the LDRW model or the log-normal distribution are recommended.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3