Biochemical transformation of canine skeletal muscle for use in cardiac-assist devices

Author:

Ianuzzo C. D.1,Hamilton N.1,O'Brien P. J.1,Desrosiers C.1,Chiu R.1

Affiliation:

1. Department of Biology and Physical Education, York University, North York, Ontario, Canada.

Abstract

Skeletal muscle has an inherent biochemical phenotypic plasticity that provides the possibility for it to be remodeled into a “heart-like” muscle for use in cardiac-assist devices. The purpose of this study was to chronically stimulate skeletal muscle electrically to transform the biochemical capacities of the three major subcellular systems (i.e., metabolic, calcium regulating, and contractile) to resemble those of heart muscle. The latissimus dorsi muscle (LDM) of mongrel dogs weighing 22-27 kg was stimulated via the thoracodorsal nerve at 2 Hz for 6-8 wk. This stimulation protocol reduced the phosphorylase (glycogenolytic) and phosphofructokinase (glycolytic) activities by 70%. The aerobic (citrate synthase activity) and fatty acid oxidative (3-hydroxyacyl-CoA dehydrogenase activity) capacities were not significantly increased by chronic stimulation and remained at about one-fourth those in the canine heart. The calcium-dependent sarcoplasmic reticulum adenosinetriphosphatase (ATPase) activity in the microsomal fraction, which was sixfold greater in the nonstimulated LDM than in the heart, was reduced by electrical stimulation to a level similar to that of the dog heart. The contractile capacity was evaluated by determining the percentage of types I and II fibers, the myofibrillar ATPase activity, and the proportion of myosin isoforms. The transformed muscle was comprised of 93 +/- 2% type I fibers, a myofibrillar ATPase activity similar to that in heart with primarily a slow-twitch muscle myosin isoform. In conclusion, electrical stimulation of canine LDM at 2 Hz for 6-8 wk resulted in two of the three biochemical systems, which confer physiological expression and fatigue resistance to muscle being transformed to resemble those of the myocardium.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3