Mucociliary interaction in vitro: effects of physiological and inflammatory stimuli

Author:

Seybold Z. V.1,Mariassy A. T.1,Stroh D.1,Kim C. S.1,Gazeroglu H.1,Wanner A.1

Affiliation:

1. Division of Pulmonary Disease, University of Miami School of Medicine, Mount Sinai Medical Center, Miami Beach, Florida 33140.

Abstract

Mucociliary transport in the airways is governed by the interaction between ciliary activity and the depth and rheological properties of the liquids (mucus) covering the epithelial surface. A change in one of these parameters may not predict the direction and magnitude of a concomitant change in mucociliary transport. We therefore determined the effects of physiological (neurotransmitters) and pathological (inflammatory mediators) stimuli on ciliary beat frequency (CBF), surface liquid velocity (SLV), surface liquid depth (SLD), and viscoelasticity of mucus in pieces of sheep trachea (n = 5 for each treatment) mounted in a chamber such that the submucosal side was bathed with Krebs-Henseleit perfusate (KH) and the luminal side was exposed to conditioned air. SLV, SLD, and CBF were measured with a microscope provided with an electronic micrometer and strobe light. Apparent viscosity and shear elastic modulus were measured with a microcapillary method using mucus collected at the downstream end of the preparation. Control CBF, SLV, and SLD were 11.6 +/- 0.4 (SE) Hz, 91 +/- 8 micron/s, and 33 +/- 5 microns, respectively, at base line and did not change during KH perfusion for 100 min. Perfusion with both acetylcholine and epinephrine (10(-5) to 10(-3) M) produced concentration-dependent increases in mean CBF (maximum increases at 10(-3) M of 16 and 9%, P less than 0.05), whereas only acetylcholine increased mean SLV (+56% at 10(-3) M, P less than 0.05). Perfusion with platelet-activating factor (10(-7) to 10(-5) M) decreased both mean CBF and SLV in a dose-dependent fashion (-6 and -63% at 10(-5) M, P less than 0.05), whereas antigen perfusion (1:60 dilution) increased mean CBF (+10%, P less than 0.05) but decreased SLV (-47%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3