Protection effect of endurance training against reoxygenation-induced injuries in rat heart

Author:

Kihlstrom M.1

Affiliation:

1. Department of Cell Biology, University of Jyvaskyla, Finland.

Abstract

Endurance training by swimming (219-229 h) resulted in a significant protection against hypoxia/reoxygenation-induced injuries in Langendorff-perfused rat hearts. The protection was manifested as improved flow characteristics and a smaller release of creatine kinase into the perfusate. The concentration of thiobarbituric acid reactive substances (TBARS) was lower in the trained than in the respective control hearts. The trained hearts also showed a lower reoxygenation-induced increase in TBARS. The myocardium of the right ventricle and that of the left subepimyocardium were the most affected by reoxygenation. The swimming program induced a decrease in the activities of catalase and glutathione reductase in all parts of the myocardium measured. A decrease in vitamin E concentration in the subendomyocardium of the left ventricle and an increase in the activity of thioredoxin reductase also occurred. An increase in the concentration of reduced glutathione due to training was also observed, especially in the left subepimyocardium, whereas the glutathione disulfide concentration and the activity of superoxide dismutase were unaffected. The activity of glucose 6-phosphate dehydrogenase increased in the right ventricle. The results suggest both the importance of cellular redox state and the role of a lower degree of enzymatic antioxidants in training-induced protection against ischemic injuries.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3