Affiliation:
1. Department of Thoracic Medicine, National Heart and Lung Institute, Royal Brompton Hospital, London, United Kingdom.
Abstract
We investigated the role of reactive oxygen species in ozone-induced airway hyperresponsiveness (AHR) in Brown Norway rats. Airway responsiveness to inhaled acetylcholine (ACh) and bradykinin (BK) and inflammatory cell recruitment in bronchoalveolar lavage fluid (BALF) were measured in vivo. Neutral endopeptidase (NEP) activity assay and measurement of BK-receptor binding sites in Brown Norway rat lungs were carried out in vitro. Apocynin (5 mg/kg), an inhibitor of superoxide anion-generating NADPH oxidase, was administered perorally 30 min before a 3- or 6-h exposure to 3 ppm of ozone, and the animals were studied 18–24 h postexposure. Ozone induced increases in airway responsiveness to ACh and BK and in neutrophil counts in BALF. Apocynin inhibited the increase in airway responsiveness to BK but not to ACh without affecting the neutrophil counts in BALF. The antioxidants allopurinol and deferoxamine prevented ozone-induced AHR to both ACh and BK but did not reduce neutrophil counts. To further examine the mechanisms of ozone-induced AHR to BK, we measured NEP activity and the density of BK receptors in vitro after ozone exposure. Ozone exposure had no significant effect either on NEP activity or on the affinity and the number of BK receptors in lungs from rats treated with or without apocynin. We conclude that superoxide anions released from inflammatory cells in the airway may be involved in ozone-induced AHR. Inactivation of NEP or upregulation of BK receptors do not appear to be involved, but the possibility of localized changes cannot be excluded.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献