Metabolic, catecholamine, and exercise performance responses to various doses of caffeine

Author:

Graham T. E.1,Spriet L. L.1

Affiliation:

1. School of Human Biology, University of Guelph, Ontario, Canada.

Abstract

This study examined the exercise responses of well-trained endurance athletes to various doses of caffeine to evaluate the impact of the drug on exercise metabolism and endurance capacity. Subjects (n = 8) withdrew from all dietary sources of caffeine for 48 h before each of four tests. One hour before exercise they ingested capsules of placebo or caffeine (3, 6, or 9 mg/kg), rested quietly, and then ran at 85% of maximal O2 consumption to voluntary exhaustion. Blood samples for methylxanthine, catecholamine, glucose, lactate, free fatty acid, and glycerol analyses were taken every 15 min. Plasma caffeine concentration increased with each dose (P < 0.05). Its major metabolite, paraxanthine, did not increase between the 6 and 9 mg/kg doses, suggesting that hepatic caffeine metabolism was saturated. Endurance was enhanced with both 3 and 6 mg/kg of caffeine (increases of 22 +/- 9 and 22 +/- 7%, respectively; both P < 0.05) over the placebo time of 49.4 +/- 4.2 min, whereas there was no significant effect with 9 mg/kg of caffeine. In contrast, plasma epinephrine was not increased with 3 mg/kg of caffeine but was greater with the higher doses (P < 0.05). Similarly only the highest dose of caffeine resulted in increases in glycerol and free fatty acids (P < 0.05). Thus the highest dose had the greatest effect on epinephrine and blood-borne metabolites yet had the least effect on performance. The lowest dose had little or no effect on epinephrine and metabolites but did have an ergogenic effect. These results are not compatible with the traditional theory that caffeine mediates its ergogenic effect via enhanced catecholamines.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3