Affiliation:
1. Department of Medicine, University of Manitoba, Winnipeg, Canada.
Abstract
The purpose of this study was to examine the role of the normal inspiratory resistive load in the regulation of respiratory motor output in resting conscious humans. We used a recently described device (J. Appl. Physiol. 62: 2491–2499, 1987) to make mouth pressure during inspiration positive and proportional to inspiratory flow, thus causing inspiratory resistive unloading (IRUL); the magnitude of IRUL (delta R = -3.0 cmH2O.1(-1).s) was set so as to unload most (approximately 86% of the normal inspiratory resistance. Six conscious normal humans were studied. Driving pressure (DP) was calculated according to the method of Younes et al. (J. Appl. Physiol. 51: 963–1001, 1981), which provides the equivalent of occlusion pressure at functional residual capacity throughout the breath. IRUL resulted in small but significant changes in minute ventilation (0.6 1/min) and in end-tidal CO2 concentration (-0.11%) with no significant change in tidal volume or respiratory frequency. There was a significant shortening of the duration (neural inspiratory time) of the rising phase of the DP waveform and the shape of the rising phase became more convex to the time axis. There was no change in the average rate of rise of DP or in the duration or shape of the declining phase. We conclude that 1) the normal inspiratory resistance is an important determinant of the duration and shape of the rising phase of DP and 2) the neural responses elicited by the normal inspiratory resistance are similar to those observed with added inspiratory resistive loads.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献