A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics

Author:

Ursino Mauro1,Lodi Carlo Alberto1

Affiliation:

1. Department of Electronics, Computer Science, and Systems, University of Bologna, I-40136 Bologna, Italy

Abstract

Ursino, Mauro, and Carlo Alberto Lodi. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J. Appl. Physiol. 82(4): 1256–1269, 1997.—A simple mathematical model of intracranial pressure (ICP) dynamics oriented to clinical practice is presented. It includes the hemodynamics of the arterial-arteriolar cerebrovascular bed, cerebrospinal fluid (CSF) production and reabsorption processes, the nonlinear pressure-volume relationship of the craniospinal compartment, and a Starling resistor mechanism for the cerebral veins. Moreover, arterioles are controlled by cerebral autoregulation mechanisms, which are simulated by means of a time constant and a sigmoidal static characteristic. The model is used to simulate interactions between ICP, cerebral blood volume, and autoregulation. Three different related phenomena are analyzed: the generation of plateau waves, the effect of acute arterial hypotension on ICP, and the role of cerebral hemodynamics during pressure-volume index (PVI) tests. Simulation results suggest the following: 1) ICP dynamics may become unstable in patients with elevated CSF outflow resistance and decreased intracranial compliance, provided cerebral autoregulation is efficient. Instability manifests itself with the occurrence of self-sustained plateau waves. 2) Moderate acute arterial hypotension may have completely different effects on ICP, depending on the value of model parameters. If physiological compensatory mechanisms (CSF circulation and intracranial storage capacity) are efficient, acute hypotension has only negligible effects on ICP and cerebral blood flow (CBF). If these compensatory mechanisms are poor, even modest hypotension may induce a large transient increase in ICP and a significant transient reduction in CBF, with risks of secondary brain damage. 3) The ICP response to a bolus injection (PVI test) is sharply affected, via cerebral blood volume changes, by cerebral hemodynamics and autoregulation. We suggest that PVI tests may be used to extract information not only on intracranial compliance and CSF circulation, but also on the status of mechanisms controlling CBF.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3