Measurement and theory of wheezing breath sounds

Author:

Gavriely N.,Palti Y.,Alroy G.,Grotberg J. B.

Abstract

We measured the time and frequency domain characteristics of breath sounds in seven asthmatic and three nonasthmatic wheezing patients. The power spectra of the wheezes were evaluated for frequency, amplitude, and timing of peaks of power and for the presence of an exponential decay of power with increasing frequency. Such decay is typical of normal vesicular breath sounds. Two patients who had the most severe asthma had no exponential decay pattern in their spectra. Other asthmatic patients had exponential patterns in some of their analyzed sound segments, with a range of slopes of the log power vs. log frequency curves from 5.7 to 17.3 dB/oct (normal range, 9.8–15.7 dB/oct). The nonasthmatic wheezing patients had normal exponential patterns in most of their analyzed sound segments. All patients had sharp peaks of power in many of the spectra of their expiratory and inspiratory lung sounds. The frequency range of the spectral peaks was 80–1,600 Hz, with some presenting constant frequency peaks throughout numerous inspiratory or expiratory sound segments recorded from one or more pickup locations. We compared the spectral shape, mode of appearance, and frequency range of wheezes with specific predictions of five theories of wheeze production: 1) turbulence-induced wall resonator, 2) turbulence-induced Helmholtz resonator, 3) acoustically stimulated vortex sound (whistle), 4) vortex-induced wall resonator, and 5) fluid dynamic flutter. We conclude that the predictions by 4 and 5 match the experimental observations better than the previously suggested mechanisms. Alterations in the exponential pattern are discussed in view of the mechanisms proposed as underlying the generation and transmission of normal lung sounds. The observed changes may reflect modified sound production in the airways or alterations in their attenuation when transmitted to the chest wall through the hyperinflated lung.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Respiratory System Examination;Quick Guide in History Taking and Physical Examination;2023-11-28

2. Comparison of Moving Average and Differential Operation for Wheeze Detection in Spectrograms;Archives of Acoustics;2023-07-26

3. Numerical Simulation of Airflow and the Aero-Acoustic Noises in Pulmonary Airways Under Different Breathing Conditions;2023

4. Breath sound analyses of infants with respiratory syncytial virus acute bronchiolitis;Pediatric Pulmonology;2022-06-21

5. A Glance-and-Gaze Network for Respiratory Sound Classification;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3