Author:
Gibbons S. I.,Adams W. C.
Abstract
Ten aerobically trained young adult females exercised continuously at 66% of maximum O2 uptake for 1 h while exposed orally to filtered air and 0.15 and 0.30 parts per million (ppm) ozone (O3) in both moderate (24 degrees C) and hot (35 degrees C) ambient conditions. Exposure to 0.30 ppm O3 induced significant impairment in forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1.0), and other pulmonary function variables. Exercise respiratory frequency (fR) increased, whereas tidal volume and alveolar volume (VA) decreased with 0.30 ppm O3 exposure. Significant interactions of O3 and ambient heat were obtained for fR and VA, whereas FVC and FEV1.0 displayed a trend toward an O3-temperature interaction. Although expired ventilation increased, the interactions could not be ascribed to a greater O3 effective dose in the 35 degrees C exposures. However, subjective discomfort increased with both O3 and heat exposure such that three subjects ceased exercise prematurely when O3 and ambient heat were combined. We conclude that accentuation of subjective limitations and certain physiological alterations by ambient heat coinciding with photochemical oxidant episodes is likely to result in more severe impairment of exercise performance, although the mechanisms remain unclear.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献