Muscle architecture and force-velocity relationships in humans

Author:

Wickiewicz T. L.,Roy R. R.,Powell P. L.,Perrine J. J.,Edgerton V. R.

Abstract

The in vivo torque-velocity relationships of the knee extensors (KE), knee flexors (KF), ankle plantarflexors (PF), and ankle dorsiflexors (DF) were determined in 12 untrained subjects using an isokinetic testing device (Cybex II). These data were then matched to the predicted maximum forces and shortening velocities derived from muscle architectural determinations made on three hemipelvectomies (36). The torque-velocity curves of all muscle groups resembled that predicted by Hill's (19, 20) equation except at the higher forces and lower velocities. The peak torques occurred at mean velocities ranging from 41–62 rad X s-1 for the KE, KF, and PF. Although the peak torque of the DF occurred at the isometric loading condition, it was also lower than that predicted by Hill's equation. The muscle fiber length and physiological cross-sectional area measurements indicate that the architecture of the human leg musculature has a major influence on the torque-velocity characteristics. These data corroborate previous findings (24) that some neural inhibitory mechanism exists in the control of the leg musculature, which limits the maximum forces that could be produced under optimal stimulating conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3