Hemoglobin concentration and aerobic work capacity in women following induced erythrocythemia

Author:

Robertson R. J.,Gilcher R.,Metz K. F.,Caspersen C. J.,Allison T. G.,Abbott R. A.,Skrinar G. S.,Krause J. R.,Nixon P. A.

Abstract

The effect of induced erythrocythemia on hemoglobin concentration ([Hb]) and aerobic work capacity was determined for nine women. Cycle tests were performed at prereinfusion (T1), 2 days after a placebo infusion (T2), 2 days postreinfusion of 334 ml of red blood cells (T3), 8 days postreinfusion (T4), and 14 days postreinfusion (T5). T1 and T2 responses did not differ, negating a placebo effect. [Hb] increased from 12.7 g X dl at T1 to 14.7 g X dl at T3 and then remained constant at T4 and T5. Hematocrit increased from 38.1% at T1 to 44.9% at T3 and then remained constant at T4 and T5. Submaximal O2 uptake (VO2) and stroke volume (SV) did not change from T1 through T5. Submaximal cardiac output (Q) and heart rate (HR) decreased from T1 to T3 and then remained constant at T4 and T5. Arteriovenous O2 difference increased from T1 to T3 and then remained constant at T4 and T5. Maximal VO2 was greater at T3 (2.65 l X min-1), T4 (2.66 l X min-1), and T5 (2.60 l X min-1) than at T1 (2.41 l X min-1). Physical work capacity was greater at T3 (10,740 kg X m), T4 (10,980 kg X m), and T5 (10,380 kg X m) than at T1 (8,747 kg X m). Maximal values for Q, HR, and SV were unchanged from T1 through T5. At maximum, arteriovenous O2 difference and Hb flow rate increased from T1 to T3 and then remained constant at T4 and T5. The greater postreinfusion [Hb] improved O2 transport capacity and appeared to regulate circulatory responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3