Evidence for second metabolic pathway for O2 from PtiO2 measurements in denervated cat carotid body

Author:

Buerk D. G.1,Nair P. K.1,Whalen W. J.1

Affiliation:

1. Biomedical Engineering and Science Institute, Drexel University, Philadelphia, Pennsylvania 19104.

Abstract

O2 microelectrode studies were conducted in the cat carotid body (CB) to investigate the hypothesis that there is a second, low affinity metabolic pathway for O2 in addition to classical oxidative metabolism. Tissue PO2 (PtiO2) and O2 disappearance rates (dPO2/dt) after brief blood flow occlusion were measured with recessed cathode microelectrodes (tip diameter less than 5 microns) at 150 sites in 15 normal cats (controls) and at 154 sites in 5 cats in which one CB had been denervated 2 or 3 days before the experiments. Mean PtiO2 was slightly higher in denervated CBs: 79.6 +/- 1.6 (SE) Torr compared with 76.4 +/- 2.0 Torr for controls (P = not significant). Mean dPO2/dt was 8.4% faster: -8.42 +/- 0.28 Torr/s compared with -7.77 +/- 0.43 Torr/s for controls (P less than 0.05). The O2 consumption rate (VO2), calculated from dPO2/dt correcting for cat oxyhemoglobin, was 7.5% higher: 1.62 and 1.51 ml.100 g-1.min-1, respectively, for denervated and control CBs (P less than 0.05). The apparent Michaelis-Menten constant, Kmapp (defined as the PtiO2 where dPO2/dt decreased by 50% from the initial rate during the first 3 s after occlusion) was determined for each O2 disappearance curve. After denervation, Kmapp decreased significantly by -47%: 12.0 +/- 1.3 Torr compared with 22.6 +/- 2.5 Torr for controls (P less than 0.01). The data provide evidence for a second metabolic pathway for O2 in the CB that loses its influence on VO2 after denervation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3