Human respiratory input impedance from 4 to 200 Hz: physiological and modeling considerations

Author:

Dorkin H. L.1,Lutchen K. R.1,Jackson A. C.1

Affiliation:

1. Department of Pediatrics, Tufts University School of Medicine, Boston, Massachusetts 02211.

Abstract

Recent studies on respiratory impedance (Zrs) have predicted that at frequencies greater than 64 Hz a second resonance will occur. Furthermore, if one intends to fit a model more complicated than the simple series combination of a resistance, inertance, and compliance to Zrs data, the only way to ensure statistically reliable parameter estimates is to include data surrounding this second resonance. An additional question, however, is whether the resulting parameters are physiologically meaningful. We obtained input impedance data from eight healthy adult humans using discrete frequency forced oscillations from 4 to 200 Hz. Three resonant frequencies were seen: 8 +/- 2, 151 +/- 10, and 182 +/- 16 Hz. A seven-parameter lumped element model provided an excellent fit to the data in all subjects. This model consists of an airway resistance (Raw), which is linearly dependent on frequency, and airway inertance separated from a tissue resistance, inertance, and compliance by a shunt compliance (Cg) thought to represent gas compressibility. Model estimates of Raw and Cg were compared with those suggested by measurement of Raw and thoracic gas volume using a plethysmograph. In all subjects the model Raw and Cg were significantly lower than and not correlated with the corresponding plethysmographic measurement. We hypothesize that the statistically reliable but physiologically inconsistent parameters are a consequence of the distorting influence of airway wall compliance and/or airway quarter-wave resonance. Such factors are not inherent to the seven-parameter model.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3