Effects of unilateral vagal stimulation on intrapulmonary neuroepithelial bodies

Author:

Lauweryns J. M.1,de Bock V.1,Decramer M.1

Affiliation:

1. Laboratorium voor Histopathologie, Faculteit Geneeskunde, Katholieke Universiteit te Leuven, Belgium.

Abstract

We studied the influence of unilateral vagal stimulation on intrapulmonary neuroepithelial bodies (NEB) in rabbits. The left vagus nerve was cut and electrically stimulated for 10 min. Animals were killed and the lungs studied with fluorescence and electron microscopy. Intensity of formaldehyde-induced fluorescence, which reflects the serotonin content in NEB, was higher on the stimulated side than on the nonstimulated side (118 +/- 7 vs. 100%, n = 8, P less than 0.001). The latter difference was found to correlate with the stimulus amplitude (r = 0.9, P less than 0.05). Ultrastructurally a decrease in the number of exocytotic dense-cored vesicle (DCV) profiles at the level of the NEB basal epithelial cell membrane was found on the stimulated side (0.32 +/- 0.10 vs. 0.45 +/- 0.16 DCV/micron of basal epithelial cell membrane, n = 8, P less than 0.05). Section of the left vagus nerve without electrical stimulation affected neither the fluorescence intensity nor the number of exocytotic DCV profiles. In animals with supranodosal or infranodosal chronic vagotomy the observed effects of unilateral vagal stimulation were no longer present. We conclude that 1) vagal stimulation increases the serotonin content of NEB; 2) it decreases the number of exocytotic DCV profiles; 3) this effect depends on the amplitude of the stimulus; 4) it is obtained through efferent vagal fibers; 5) these results are the opposite of the effects seen after exposing normal NEB to acute hypoxia; and 6) these physiological experiments corroborate a vagal innervation of NEB, which may play an important role in modulating the sensitivity and reaction of NEB to various stimuli.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3