Mechanism of enhanced cold tolerance by an ephedrine-caffeine mixture in humans

Author:

Vallerand A. L.1,Jacobs I.1,Kavanagh M. F.1

Affiliation:

1. Environmental Physiology Section, Defence and Civil Institute of Environmental Medicine, Downsview, Ontario, Canada.

Abstract

The influence of a thermogenic mixture of ephedrine- (1 mg/kg) caffeine (2.5 mg/kg) on cold tolerance was investigated in nine healthy young male subjects during two seminude exposures to cold air (3 h at 10 degrees C). The drug ingestion reduced the total drop in core, mean skin, and mean body temperatures (P less than 0.01), thus producing significantly warmer final core, mean skin, and mean body temperatures compared with the placebo ingestion. The drug ingestion increased the total 3-h energy expenditure by 18.6% compared with that of the placebo ingestion in the cold (P less than 0.01). By means of the nonprotein respiratory exchange ratio to calculate the rates of substrate oxidation, it was found that the drug ingestion increased carbohydrate oxidation by as much as 41.7% above that of the placebo (P less than 0.05). In contrast, the drug mixture had no significant influence on lipid or protein metabolism. The results demonstrate that the ingestion of an ephedrine-caffeine mixture improves cold tolerance in humans by significantly increasing body temperatures in the cold. These improvements were not caused by an increased conservation of heat but by a greater energy expenditure, which appears to be dependent on an enhanced carbohydrate utilization.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3