Two-cytochrome metabolic model for carotid body PtiO2 and chemosensitivity changes after hemorrhage

Author:

Buerk D. G.1,Nair P. K.1,Whalen W. J.1

Affiliation:

1. Biomedical Engineering and Science Institute, Drexel University, Philadelphia, Pennsylvania 19104.

Abstract

O2 microelectrode measurements were made in the cat carotid body (CB) at normal control blood pressures (C) and after hemorrhage (H) to reduce mean arterial blood pressure [C, 98.7 +/- 4.6 (SE) mmHg; H, 58.1 +/- 1.8; P less than 0.001; paired t test; n = 9 cats]. Mean tissue PO2 (PtiO2) was significantly lower (C, 78.4 +/- 3.0 Torr; H, 65.3 +/- 4.8; P less than 0.01). Except for two experiments with good autoregulation, the decrease in PtiO2 correlated with the reduction in blood pressure (r = 0.791, P less than 0.005). Measurements of O2 disappearance curves (DCs) and sinus nerve discharge (ND) were obtained after blood supply was occluded for 30–45 s (56 C DCs, 44 H DCs). Disappearance rates (dPO2/dt) were significantly slower after hemorrhage (C, -7.52 +/- 0.47 Torr/s; H, -6.60 +/- 0.44; P less than 0.01), decreasing by 0.656 Torr/s for each 10 Torr fall in PtiO2 (r = 0.626, P less than 0.05). Resting ND before occlusion increased during hypotension (11.6 +/- 2.9% of control, P less than 0.01) and correlated with the decrease in PtiO2 (r = -0.792, P less than 0.005). A computer simulation was performed for a two-cytochrome metabolic model with a second, low-O2-affinity oxidase in addition to normal oxidative metabolism. The effects of cat oxyhemoglobin and blood pH on the O2 DC measurement were also taken into account. The simulation for the two-cytochrome model was consistent with our experimental data and predicts reductions in blood flow and O2 metabolism with hypotension after hemorrhage that have similarities, as well as aspects that disagree, with previous reports in the literature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3