Lung weight in vivo measured with computed tomography and rebreathing of soluble gases

Author:

Hyde R. W.1,Wandtke J. C.1,Fahey P. J.1,Utell M. J.1,Plewes D. B.1,Goske M.1

Affiliation:

1. Department of Medicine, University of Rochester School of Medicine, New York 14642.

Abstract

In nine anesthetized dogs, accuracy of noninvasive measurements of lung weight (W) and gas volume in vivo was determined from volume and density determined by computed tomography (CT) and by rebreathing helium and the soluble gases dimethyl ether (WDME) and acetylene (WC2H2). Reference standards were obtained from the postmortem scale weight of the frozen lungs (Wscale) and compared with the CT lung weights measured in the living dog (WCT-38) and the frozen carcass (WCT-cold). WCT-cold did not significantly differ from Wscale [-2 +/- 9% (SD), P = 0.7]. WCT-cold was 10% greater than WCT-38 (0.10 greater than P greater than 0.05), suggesting an increase in lung weight despite immediately commencing freezing after death. WDME measured 64 +/- 6% and WC2H2 56 +/- 12% of WCT-38. Serial multiple measurements in three dogs over 14 wk showed a coefficient of variation (CV) of 10 +/- 2% for WDME, 18 +/- 2% for WC2H2, 4.1 +/- 0.9% for WCT, 2.6 +/- 0.8% for CT density, and 3.5 +/- 1.6% for functional residual capacity (FRC) by CT. FRC calculated from CT consistently underestimated FRC measured by rebreathing helium by 18 +/- 8% (P less than 0.005). This error, despite good agreement between WCT and Wscale, was explained by underestimation of CT total lung volume and overestimation of lung density by factors known to affect CT readings, such as partial volume effects, beam hardening, and limited number of input signals. These data show that CT scanning can provide serial measurement of the mass, density, and volume of the lungs with a CV in the order of 5%, but the rebreathing of soluble gases gives more than double this variability. Measurements of WDME performed on the same day had a CV of 3 +/- 1%, so that WDME provides a precise noninvasive means to measure lung weight in acute studies.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3