Blood flow distribution within the rib cage muscles

Author:

Brancatisano A.1,Amis T. C.1,Tully A.1,Engel L. A.1

Affiliation:

1. Thoracic Medicine Unit, Westmead Hospital, Sydney, New South Wales, Australia.

Abstract

We used 15-microns radiolabeled microspheres to study the regional distribution of blood flow (Q) among parasternal (PS), transversus thoracis, and external (EI) and internal intercostal muscles (II) in nine anesthetized supine mongrel dogs. We measured Q (ml.min-1.100 g-1) in each intercostal space (ICS) during spontaneous breathing, inspiratory resistive loading, and mechanical ventilation following paralysis. At necropsy the EI, II, and PS were excised and sampled separately for each ICS. During paralysis there was no consistent gradient in Q among the PS, II, and EI muscles. During spontaneous breathing, Q to PS increased linearly by 125% between the first and fourth to sixth ICS, Q to EI decreased progressively from the first/second ICS to the fifth/sixth ICS, whereas Q to the II was uniform. During inspiratory resistive loading, in which mouth pressures of -16 +/- 4 cmH2O were generated, the PS gradient was similar to that during spontaneous breathing. Also, Q to the EI increased in the cranial interspaces (P less than 0.02), whereas Q to the II of the seventh/eighth ICS was greater than that of the first/second ICS (P less than 0.001). Furthermore, with loading, ventrodorsal gradients in Q appeared within both EI and II interspaces. There was no consistent gradient in Q within the transversus thoracis muscle during any of the interventions. Our results demonstrate nonuniform Q within PS, EI, and II during both spontaneous and inspiratory resistive loaded breathing. On the assumption that changes in Q reflect changes in activation, our results suggest systematic topographical patterns of recruitment of rib cage respiratory muscles.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3