Muscle 31P-NMR in humans: estimate of bias and qualitative assessment of ATPase activity

Author:

Binzoni T.1,Cerretelli P.1

Affiliation:

1. Department of Physiology, Centre Medical Universitaire, Geneva, Switzerland.

Abstract

A mathematical model is developed whereby the longitudinal magnetization of phosphocreatine (PC), ATP, Pi, and total phosphate (PT) can be calculated on the basis of assumed chemical rate constants (kappa i) and spin lattice relaxation times of the muscle PC in equilibrium ATP in equilibrium Pi exchange system. By means of this model, some unexplained 31P nuclear magnetic resonance (NMR) spectroscopy results from the literature (e.g., a decrease of PT in a closed system) could be explained simply on the basis of the physiological variability of kappa i. Moreover, appropriate model simulations indicate that 1) 31P-NMR spectra obtained with short relaxation delays may be influenced to various extents by the metabolic and physicochemical status of the muscle; 2) the assessment of kappa i by standard NMR spectroscopy techniques may be extremely critical; 3) delta PC/delta Pi, as obtained from conventional 31P-NMR spectra, may represent a sensible index of kappa 2 (the pseudo first-order chemical exchange rate constant of the adenosinetriphosphatase reaction); 4) delta PC/delta Pi changes as detected from sequential (short relaxation delays) 31P-NMR spectra obtained in humans during metabolic transients (e.g., during transition from rest to work and vice versa) may represent an index of transient changes of kappa 2.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3