Pulmonary artery occlusion is sufficient to increase pulmonary vascular permeability in rabbits

Author:

Bishop M. J.1,Lamm W.1,Guidotti S. M.1,Albert R. K.1

Affiliation:

1. Department of Anesthesiology, Department of Veterans Affairs Medical Service, Seattle, Washington.

Abstract

Unilateral pulmonary artery obstruction (PAO) for 24–48 h, followed by reperfusion, results in pulmonary edema and lung inflammation. We hypothesized that lung injury actually occurred during the period of PAO but, because of low microvascular pressures during the period of occlusion, was not detected until perfusion was reestablished. To test this hypothesis, we studied 14 rabbits divided into three groups: group I rabbits underwent sham occlusion of the left pulmonary artery for 24 h; group II rabbits underwent PAO but were not reperfused; and group III rabbits were subjected to PAO and then reperfused for 4 h. The fluid filtration coefficient measured during a zone 3 no-flow hydrostatic stress (pulmonary arterial pressure = pulmonary venous pressure, both greater than alveolar pressure) in group I lungs was less than that of lungs in either group II or III [0.52 +/- 0.02 (SE) ml.min-1.cmH2O.100 g wet wt-1 vs. 0.94 +/- 0.11 and 0.86 +/- 0.13 for groups II and III, respectively, P less than 0.05]. The wet-to-dry weight ratio of the left lung measured after the zone 3 stress was applied for 20 min was 6.90 +/- 0.09 in group I rabbits and 9.21 +/- 0.75 and 11.75 +/- 0.44 in groups II and III, respectively (P less than 0.05). Radiolabeled microspheres demonstrated that flow to the left lung was diminished after the period of PAO (38 +/- 4, 9 +/- 5, and 2 +/- 1% of cardiac output in groups I, II, and III, respectively; P less than 0.05 for group I vs. groups II and III).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3