Affiliation:
1. Department of Anesthesiology, Children's Hospital, Seattle, Washington.
Abstract
A mathematical model was created to test the hypothesis that a partially covered febrile infant may develop potentially lethal temperature elevation. Infants may be at special risk to develop hyperthermia because, unlike older children, infants may not be able to remove blankets in response to temperature elevation. The model compared heat production (MTsk) with heat loss (Qtot). The difference between these terms is the excess energy (E): MTsk - Qtot = E. In most situations the simulated infant transfers heat to the environment as rapidly as it is produced (E less than 0), so hyperthermia does not result. In some situations, heat production exceeds heat loss (E greater than 0), causing progressive warming. The time was calculated for the simulated infant to progress from 41 to 43.4 degrees C (defined as a lethal end point). In certain circumstances, this may occur in less than 90 min. An infant at high risk of hyperthermia may not appear to be covered by a conspicuous excess of insulation (less than or equal to 3.5 cm may be sufficient). In many situations, heat loss is more closely determined by exposed body surface area than by blanket thickness. These findings have important implications for understanding the antecedents of hyperthermia in infants and may help in understanding the role of hyperthermia in certain pediatric illnesses.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献