Appearance of airway absorption and exudation tracers in guinea pig tracheobronchial lymph nodes

Author:

Erjefalt I.1,Luts A.1,Persson C. G.1

Affiliation:

1. Department of Pharmacology 1, Astra Draco, Lund, Sweden.

Abstract

This study examines the fate of extravasated plasma in inflammatory stimulus-challenged large tracheobronchial airways of ketamine-xylazine-anesthetized guinea pigs. Entry of plasma tracers into the airway lumen was determined by a validated noninjurious airway lavage technique. Removal by airway lymphatics was assessed by tracheobronchial lymph node levels of plasma tracers. Mucosal challenges with histamine (5 nmol), bradykinin (5 nmol), capsaicin (0.4 nmol), or allergen (ovalbumin, 3 pmol) increased the appearance of a plasma tracer (131I-labeled albumin previously injected intravenously) in the airway lumen within 10 min (10–20 times control; P < 0.001), whereas the contractile agent carbachol (8 nmol) was without exudative effect. The mediators were without effect, and capsaicin and allergen only slightly increased the lymph node level of plasma exudation tracer (1.5 times control; P < 0.05). Hence, removal via the lymphatic route of plasma macromolecules may be negligible in the acute and postacute phases of an airway exudation response. Experiments were also carried out with luminally applied macromolecular tracers. These were absorbed from the mucosal surface into the circulation, but a small portion was also transported to the lymph nodes, demonstrating the interconnections between the mucosa and the sampled nodes. Only capsaicin produced an increased node level of absorption tracer. Immunohistochemistry showed that the tracheobronchial tissue and lymph nodes are endowed with nerve fibers containing substance P, the release of which may have mediated lymph transport, vascular, and exudative effects of capsaicin in the present studies.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3