Enhanced gluconeogenesis from lactate in perfused livers after endurance training

Author:

Sumida K. D.1,Urdiales J. H.1,Donovan C. M.1

Affiliation:

1. Department of Exercise Science, University of Southern California, Los Angeles 90089–0652.

Abstract

The effects of endurance training (running 90 min/day at 30 m/min, 10% grade) on hepatic gluconeogenesis were studied in 24-h-fasted rats with use of the isolated liver perfusion technique. After isolation, the liver was perfused (single pass) for 30 min with Krebs-Henseleit bicarbonate buffer and fresh bovine erythrocytes (hematocrit 22–24%) with no added substrate. Subsequent to the "washout" period, the reservoir was elevated with various concentrations of lactate and [U-14C]lactate (10,000 dpm/ml) to assess hepatic glucose production. Relative flow rates were not significantly different between trained (1.94 +/- 0.05 ml/g liver) and control livers (1.91 +/- 0.05 ml/g liver). Furthermore, no significant differences were observed in perfusate pH, hematocrit, bile production, or serum alanine aminotransferase effluxing from trained or control livers. At saturating arterial lactate concentrations (> 2 mM), the maximal rate (Vmax) for hepatic glucose production was significantly higher for trained (0.91 +/- 0.04 mumol.min-1 x g liver-1) than for control livers (0.73 +/- 0.02 mumol.min-1 x g liver-1). That this reflected increased gluconeogenesis is supported by a significant elevation in the Vmax for [14C]glucose production from trained (13,150 +/- 578 dpm.min-1 x g liver-1) compared with control livers (10,712 +/- 505 dpm.min-1 x g liver-1). Significant increases were also observed in the Vmax for lactate uptake (25%), O2 consumption (19%), and 14CO2 production (23%) from endurance-trained livers. The Km for hepatic glucose output, approximately 1.05 mM lactate, was unchanged after endurance training. These findings demonstrate that chronic physical activity results in an elevated capacity for hepatic gluconeogenesis, as assessed in situ at saturating lactate concentrations.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3