Influence of respiration on heart rate and blood pressure fluctuations

Author:

Novak V.1,Novak P.1,de Champlain J.1,Le Blanc A. R.1,Martin R.1,Nadeau R.1

Affiliation:

1. Research Center, Hopital du Sacre-Coeur de Montreal, Quebec, Canada.

Abstract

The dynamics of the respiratory and cardiovascular systems were studied by continuously slowing respiration from 0.46 to 0.05 Hz. The time-frequency distribution and global spectral analysis were used to assess the R-R interval (R-R) and the systolic and diastolic blood pressure fluctuations in 16 healthy subjects. During rest, the nonrespiratory-to-respiratory frequency ratios were not affected by occasional slow breathing, whereas the low- (0.01–0.15 Hz) to high- (0.15–0.3 Hz) frequency indexes for blood pressure were increased (P < 0.05). The respiratory fluctuations in R-R and the systolic and diastolic pressures were paced over the 0.46- to 0.05-Hz range. As respiration slowed to 0.07–0.09 Hz, the frequency content of the respiration and cardiovascular variables increased sharply and nonlinearly to a maximum that exceeded values at higher frequencies (P < 0.001). The nonrespiratory frequency content remained stable in the 0.01- to 0.05-Hz range and did not significantly differ from that at rest. In contrast, the nonstable 0.05- to 0.1-Hz component was suppressed. A slow 0.012- to 0.017-Hz rhythm modulated respiration and hemodynamic fluctuations at both respiratory and nonrespiratory frequencies. The study indicated that respiration input should be considered in the interpretation of global spectra. Furthermore the time-frequency distributions demonstrated that a close nonlinear coupling exists between the respiratory and cardiovascular systems.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 206 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3