Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability

Author:

Nakamura Y.1,Yamamoto Y.1,Muraoka I.1

Affiliation:

1. Department of Sports Sciences, Waseda University, Saitama, Japan.

Abstract

The objectives of the present study were to investigate autonomic nervous system influence on heart rate during physical exercise and to examine the relationship between the fractal component in heart rate variability (HRV) and the system's response. Ten subjects performed incremental exercise on a cycle ergometer, consisting of a 5-min warm-up period followed by a ramp protocol, with work rate increasing at a rate of 2.0 W/min until exhaustion. During exercise, alveolar gas exchange, plasma norepinephrine (NE) and epinephrine (E) responses, and beat-to-beat HRV were monitored. HRV data were analyzed by "coarse-graining spectral analysis" (Y. Yamamoto and R. L. Hughson. J. Appl. Physiol. 71: 1143–1150, 1991) to break down their total power (Pt) into harmonic and nonharmonic (fractal) components. The harmonic component was further divided into low-frequency (0.0–0.15 Hz) and high-frequency (0.15–0.8 Hz) components, from which low-frequency and high-frequency power (Pl and Ph, respectively) were calculated. Parasympathetic (PNS) and sympathetic (SNS) nervous system activity indicators were evaluated by Ph/Pt and Pl/Ph, respectively. From the fractal component, the fractal dimension (DF) and the spectral exponent (beta) were calculated. The PNS indicator decreased significantly (P < 0.05) when exercise intensity exceeded 50% of peak oxygen uptake (VO2 peak). Conversely, the SNS indicator initially increased at 50–60% VO2peak (P < 0.05) and further increased significantly (P < 0.05) at > 60% VO2peak when there were also more pronounced increases in NE and E.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3