Late phase bronchial obstruction following nonimmunologic mast cell degranulation

Author:

Russi E. W.,Perruchoud A. P.,Yerger L. D.,Stevenson J. S.,Tabak J.,Marchette B.,Abraham W. M.

Abstract

Immunologic degranulation of airway mast cells after antigen inhalation produces early and late airway obstructions in allergic sheep. In this study we determined whether nonimmunologic degranulation of airway mast cells by inhalation of compound 48/80 had similar effects. In five sheep, pulmonary flow resistance (RL), thoracic gas volume (Vtg), and arterial O2 tension (Pao2) were determined prior to and at predetermined times after inhalation of 48/80 aerosol. Immediately after challenge mean specific lung resistance (sRL = RL X Vtg) increased by 259% and mean Pao2 decreased by 29%. All values returned to normal by 3 h. By 5-h postchallenge sRL again increased significantly; this second increase in sRL (92% above base line) was maximal at 7 h and was accompanied by a 17% drop in Pao2. In these same sheep inhalation of Ascaris suum antigen produced comparable early changes in sRL, but the onset of the late response was somewhat delayed and more pronounced. In a second group of sheep (n = 5), pretreatment with the mast cell stabilizer cromolyn sodium prevented both early and late responses by compound 48/80. Pretreatment with the histamine H1-antagonist chlorpheniramine had no significant effect on either response, whereas pretreatment with FPL 55712, an antagonist of slow-reacting substance of anaphylaxis (SRS-A), slightly but not significantly attenuated the early response and completely prevented the late response. We conclude that, like immunologic stimuli, nonimmunologic mast cell degranulation produces early and late bronchial obstructions in allergic sheep; that these responses are mediator dependent; and that while histamine and SRS-A contribute to the early response, it is the early appearance of SRS-A which is an important prerequisite for the late response.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3