Depression of hypercapnic ventilatory drive by testosterone in the sleeping infant primate

Author:

Emery M. J.1,Hlastala M. P.1,Matsumoto A. M.1

Affiliation:

1. Department of Physiology and Biophysics, University of Washington, Seattle 98195.

Abstract

In postnatal infants, there is similarity between the time course of transient gonadal steroid secretion and the age-related incidence of sudden infant death syndrome (SIDS). The cause of death in SIDS is generally thought to be a ventilatory arrest, but the mechanism responsible for such an event remains unknown. Testosterone has been demonstrated to depress ventilatory drive and increase sleep apnea in adult men. We tested the hypothesis that the gonadal steroid testosterone depresses infant ventilatory drive during sleep. Three newborn male infant primates were gonadectomized after birth. Ventilation was observed and quantified for each animal during completely natural unencumbered sleep by plethysmography for an average of 16 wk. Ventilatory patterns were recorded, and ventilatory drive was challenged with hypercapnia and hypoxia during quiet sleep on the night before and the night after testosterone administration. Hypercapnic ventilatory drive during sleep was significantly depressed by an average of 33.6% on the night after compared with the night before testosterone administration. Depression of the response to hypercapnia after testosterone was not accompanied by any change in resting minute ventilation measured during quiet sleep. Hypoxic ventilatory drive, incidence of apneic events, and length of apnea were not different after testosterone. The effects of injecting a placebo on ventilatory patterns and drive were tested by giving the placebo to all animals on several test weeks. Placebo injections produced no significant change in any measured parameters. These results support the hypothesis that testosterone depresses hypercapnic ventilatory drive during sleep in the infant primate.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3