Affiliation:
1. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332–0405.
Abstract
In vivo measurements of blood velocity profiles are difficult to obtain and interpret, since the parameters that govern the normally highly complex flow situation may not be fully quantified or understood at the time of measurement. In vitro flow models have been used often to better understand vascular hemodynamics. The assumptions made in the design of these models limit the applicability of the results. In this study, in vitro flow measurements made in a carefully designed model of the abdominal aorta were compared with in vivo measurements obtained with magnetic resonance imaging. In the suprarenal aorta, the velocity profiles were mostly forward and axisymmetric in both the in vitro and in vivo cases. In the infrarenal aorta, there was extensive flow reversal noted near the posterior wall in both cases. In the aortic bifurcation, two peaks of flow reversal were noted near the lateral posterior walls, and M-shaped velocity profiles were observed in late diastole. The in vitro and in vivo measurements exhibited good qualitative agreement. The in vitro model was accurate in modeling the in vivo hemodynamics of the abdominal aorta. The complex phenomena observed in vivo were explained on the basis of knowledge gained from the in vitro study.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献