Inhomogeneity of pulmonary ventilation during sustained microgravity as determined by single-breath washouts

Author:

Guy H. J.1,Prisk G. K.1,Elliott A. R.1,Deutschman R. A.1,West J. B.1

Affiliation:

1. Department of Medicine, University of California, San Diego, La Jolla 92093–0931.

Abstract

Gravity is known to cause inhomogeneity of ventilation. Nongravitational factors are also recognized, but their relative contribution is not understood. We therefore studied ventilatory inhomogeneity during sustained microgravity during the 9-day flight of Spacelab SLS-1. All seven crew members performed single-breath nitrogen washouts. They inspired a vital capacity breath of 100% oxygen with a bolus of argon at the start of inspiration, and the inspiratory and expiratory flow rates were controlled at 0.5 l/s. Control measurements in normal gravity (1 G) were made pre- and postflight in the standing and supine position. Compared with the standing 1-G measurements, there was a marked decrease in ventilatory inhomogeneity during microgravity, as evidenced by the significant reductions in cardiogenic oscillations, slope of phase III, and height of phase IV for nitrogen and argon. However, argon phase IV volume was not reduced, and considerable ventilatory inhomogeneity remained. For example, the heights of the cardiogenic oscillations during microgravity for nitrogen and argon were 44 and 24%, respectively, of their values at 1 G, whereas the slopes of phase III for nitrogen and argon were 78 and 29%, respectively, of those at 1 G. The presence of a phase IV in microgravity is strong evidence that airway closure still occurs in the absence of gravity. The results were qualitatively similar to those found previously during short periods of 0 G in parabolic flight.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3