Acetylcholine and carotid body excitation during hypoxia in the cat

Author:

Fitzgerald R. S.1,Shirahata M.1

Affiliation:

1. Department of Environmental Health Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205.

Abstract

The purpose of this study was to test the hypothesis that acetylcholine (ACh) is an excitatory neurotransmitter during the hypoxic stimulation of the carotid body. Cats were anesthetized, paralyzed, and artificially ventilated. The common carotid artery was fitted with a loop containing a stopcock for selectively perfusing the carotid body. Neural activity was recorded from the whole carotid sinus nerve. After the cats had been ventilated on 10% O2 for 3 min with the carotid body being normally perfused with its own hypoxic arterial blood, the stopcock was turned, and either equally hypoxic Krebs-Ringer bicarbonate solution (KRB) containing alpha-bungarotoxin, mecamylamine, and atropine or hypoxic blocker-free KRB perfused the carotid body for 2 min. The stopcock was returned to its original position, allowing blocker-free hypoxic blood to perfuse the carotid body once again. With this protocol we found 1) the cholinergic blockers reduced the carotid body response to hypoxic KRB in a dose-dependent manner; 2) carotid baroreceptor activity was not reduced by the blockers, suggesting that the action of the blockers was not nonspecific (whereas lidocaine rapidly reduced both chemoreceptor and baroreceptor activity); 3) inclusion of the blockers in perfused hypoxic blood also reduced neural output from the carotid body; and 4) the blockers reduced the carotid body's neural response to hypoxic KRB containing substance P (20 micrograms/100 ml), suggesting that substance P may be linked to ACh in the carotid body. We conclude that these data provide good evidence supportive of an excitatory role for ACh in carotid body hypoxic excitation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3